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A B S T R A C T   

The measurement of fruit size (length, width, and area) is one of the key components in the assessment of fruit 
ripeness for consumption and fruit quality. Due to issues with fruit shape and ambient occlusion, noncontact 
measurement of fruits in their natural growth state in natural environment is more difficult. This study proposes 
a fast and low-cost noncontact measurement solution combining deep learning, image analysis and robotic 
platform. First, based on the YOLOv5 object detection algorithm and converged dataset, a 95.6% detection 
accuracy and 0.05 s detection speed was achieved. Second, a Cycle GAN model for fruit occlusion recovery was 
established, and the occlusion of the fruit under different natural conditions was adaptively repaired, with a 
5.48% average relative error under different occlusion conditions. Third, through image morphological opera-
tions, the size measurements were achieved, with an average relative error of 8.43% for individual fruits and the 
10.12% overall error under the complex natural environment. This method and platform provide a systematic, 
fast (0.2s) and low-cost solution for the noncontact measurement of fruit size.   

1. Introduction 

The measurement of fruit size in their natural state plays a crucial 
role in the assessment of food quality. By quantifying the dimensions of 
fruits in their natural environment, researchers and farmers can obtain 
essential information regarding the maturity stage and physiological 
changes occurring within the fruit. Fruit size measurement parameters, 
including length, width, area, volume, and weight(Miranda et al., 2023). 
Among the parameters, area, length, and width are the fundamental 
fruit dimensional parameters that are most likely to be directly 
measured from the image. But the growth status of fruits in natural 
environments is complex, and monitoring the entire growth cycle of 
fruits requires a measurement approach that is fast and low-cost. 

To measure fruit size, the detection of fruits must be realized in the 
natural environment first. Common detection methods include digital 
image (Donmez et al., 2021; Gan et al., 2020; Guo et al., 2020) and 
machine learning(Fan et al., 2020; Sari and Gofuku, 2023; Xu et al., 
2024). However, the accuracy is limited in natural environments and 
can easily be affected by factors, such as occlusion. However, occlusion 
is a major problem when measuring fruit size under natural conditions. 
Improved Hough Transform (Chen et al., 2021) and deep learning-based 
occlusion recovery methods (Ge et al., 2019; Kim et al., 2023; Magistri 
et al., 2022) were proposed to solve the occlusion. However, these 
methods cannot be used for noncircular fruits, or with slightly low 

precision, or increased costs. In recent decades, digital image processing 
techniques have achieved significant application in fruit size measure-
ment. Common image processing algorithms have been applied to in-
dividual fruits(Al-kaf et al., 2020; Lu et al., 2022; Phate et al., 2021). 
Multi-image or multi-camera solutions and 3D RGB-D sensors, have 
made progress in accuracy and ability for capturing the 
three-dimensional characteristics of a fruit(Jadhav et al., 2019; Liong 
et al., 2023); however, the cost is high and it is not suitable for natural 
conditions. 

In the abovementioned research on fruit size measurements, their 
limitations are summarized as follows: (1) The detection of fruits must 
be carried out in a complex natural environment, with the detection 
speed and accuracy considered simultaneously. (2) The existing occlu-
sion recovery schemes are either constrained by fruit shape, or have 
slightly low accuracy or high cost. (3) Existing image measurement 
schemes are primarily intended for isolated fruits in a fixed position, 
which are not suitable for natural conditions. To address the challenges 
in fruit size measurement mentioned above, deep learning methods have 
been attempted to achieve object detection and occlusion recovery of 
fruits in natural environments. Combined with image processing tech-
niques and robotic platform, size measurement is achieved. The main 
contributions of this study are as follows: 
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(1) A fast and light-weight fruit detection model was built using 
YOLOv5, which combines a self-built dataset and an Open Images 
dataset to detect fruits accurately.  

(2) An occlusion recovery method was developed based on Cycle 
GAN to realize the adaptive recovery of the natural occlusion of 
fruits, and it was not limited by the shape of the fruit.  

(3) Morphological operations were performed on the fruit image to 
obtain the pixel size and estimate the actual size of the fruit using 
the distance value obtained from a ranging device mounted on a 
robot platform.  

(4) A robot platform integrated with different parts was built, and 
field experiments were conducted to test the performance of the 
proposed method in complex natural environments. 

The rest chapters of the paper are arranged as follows: Section 2 
describes the experimental setup, methodology, and evaluation metrics. 
Section 3 presents the main test results and relevant analysis discussions. 
Finally, Section 4 provides a brief summary and outlines future direction 
for improvement. 

2. Materials and methods 

2.1. The test platform and overall flow-chart of the proposed method 

To verify and test the proposed method, a single camera, a ranging 
device, and wireless transmission were used to achieve automatic image 
acquisition. As shown in Fig. 1a, for fruit plants of different heights, a 

camera and a ranging device were mounted on an unmanned aerial 
vehicle (UAV) or robot to capture pictures of fruit plants at a close dis-
tance. The collected images and distance information were sent to a 
computer in real time via a wireless communication equipment. The 
brief process of running this operation in the field involves setting the 
UAV or robot to a specific action program. It will stop at preset position 
and capture images and distance information, which are then trans-
mitted to the computer. To achieve this, a robotic platform was built to 
assist with the acquisition of images and distance information, as shown 
in Fig. 1b. A data collection box was placed next to the plant to gather 
information of the plant’s growth environment and assist in positioning 
the robot accurately in front of the plant. The data collection box com-
bines the robot’s inertial navigation and GPS navigation can achieve a 
positioning error ~2.5 cm, which help robot to obtain clear fruit image 
and distance (Zilan Xiong et al., 2021). The image acquisition was 
completed using a camera (WXSJ-1080P-AHD) controlled by a Rasp-
berry Pi 3B, while the distance information was obtained using a ranging 
device (HC-SR04) controlled by STM32, and these modules are inte-
grated on the robot. The collected image and distance information were 
sent to a computer (DELL, Intel i5 9th Gen, NVIDIA 1650) in real time 
through a wireless network. The stay time of the data collection and 
transmission process is within 5 s. The running programs were based on 
Python (Anaconda, CUDA10.0, Cudnn7.8), and the related training and 
testing were based on this configuration. This study focused on the 
proposed method for measuring fruit size in natural environments. The 
image and distance acquisition processes can be adaptively selected 
according to the actual situation and not the exact example given in 

Fig. 1. The main experiment process of proposed method. (a) Automatic image acquisition process achieved by a single camera, ranging device and wireless 
transmission; (b) The robot platform for image acquisition used in this study. 
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Fig. 1b. 
After the collected images were sent to a computer, the processing 

flow shown in Fig. 2 was performed. The object detection model is first 
used to achieve fast and low-cost fruit detection. Subsequently, the color 
feature of the fruit is used to adaptively repair the occluded fruit image. 
Finally, the image morphology operation extracts the fruit pixel size 
information, combines it with the distance information to convert the 
pixels to the actual size, and obtains the size measurement. 

2.2. YOLOv5 

Currently, common object detection algorithms are divided into two 
categories: one-stage and two-stage object detectors. The most repre-
sentative algorithm for a two-stage object detector is the R–CNN series 
(Hmidani and Ismaili Alaoui, 2022). The representative algorithms for 
region-free one-stage object detectors are the SSD(Zhang et al., 2021) 
and YOLO series(Bochkovskiy et al., 2020; Redmon and Ali, 2018). 
Among these algorithms, the YOLO series has been optimized and 
developed in recent years and is generally superior to other algorithms 
in terms of both detection accuracy and speed. YOLOv5(https://github. 
com/ultralytics/yolov5) is an object detection algorithm capable of 
detecting and classifying objects in real-time. YOLOv5 has advanced 
from the YOLO family of object detection models, due to its high accu-
racy, speed, and ease of implementation. The YOLOv5 algorithm has 
been tested on the COCO dataset, where it has achieved high mAP50 and 
FPS scores exceeding those of other state-of-the-art object detection 
algorithms. 

The YOLOv5 algorithm uses a new network architecture and multi- 
scale prediction techniques to improve object detection capabilities. 
The algorithm is divided into four parts: Input, Backbone, Neck, and 
Prediction. Resizing the input image to 640*640*3 and applying a series 

of data augmentations help improve model generalization ability. The 
Backbone employs deep convolutional neural networks to extract high- 
level features from images, and the Neck enhances feature representa-
tion through the incorporation of contextual information and spatial 
details that are passed to Prediction. After non-maximum suppression 
and other post-processing techniques, the object detection results are 
obtained. YOLOv5 employs a fused loss function: 

Losstotal = lbox + lcls + lobj (1)  

Where the lbox, lcls and lobj are the box loss function, classification loss 
function, and confidence loss function, respectively (Feng et al., 2023). 
The overall loss is the sum of these three losses, and by adjusting the 
weight value in each function, the attention to the loss of the three can 
be adjusted to improve the generalization ability of the model. 

2.3. Cycle GAN 

In natural environments, fruits are easily occluded by branches and 
leaves, which affects the accuracy of fruit size measurement. Existing 
occlusion processing methods are constrained by issues such as fruit 
shape or growth environments, making it difficult to balance accuracy 
and cost factors effectively. Therefore, an image restoration method is 
required to adaptively solve the fruit occlusion problem. This paper 
proposed a novel fruit-occlusion recovery method based on style 
transfers. 

2.3.1. Generative adversarial networks 
GAN (Generative adversarial networks) is a network model proposed 

by Goodfellow to generate data via an adversarial process, with a 
framework similar to that of a minimax two-player game (Goodfellow 
et al., 2020). GAN consist of two neural networks: a generator G and a 

Fig. 2. The specific size measurement process on the computer.  
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discriminator D. The generator generates fake data while the discrimi-
nator distinguishes the real data from the fake data. The noise vector z is 
used as an input to generate fake images similar to the real image x. The 
discriminator D is used to judge whether the given image is real or fake. 
An adversarial relationship exists between the generator G and 
discriminator D. In the GAN training process, G needs to make the 
generated sample closer to the real sample, that is, make D(G(z)) close to 
1. In contrast, D must be able to estimate the possibility that the sample 
comes from the real sample and the generated fake sample; that is, D(x) 
is closer to 1, and D(G(z)) is closer to 0. Therefore, the target function of 
the GAN model is defined as follows (Goodfellow et al., 2020): 

min
G

max
D

V(D,G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log (1 − D(G(z)))] (2) 

Through such an adversarial process, the performances of the 
generator and discriminator are alternately improved. GAN have been 
applied in various domains, including image and video generation, style 
transfer, and data augmentation. 

2.3.2. Cycle-consistent adversarial networks 
The Cycle GAN is a neural network model expanded from the GAN 

(Zhu et al., 2017). It is composed of two mirrored GAN networks that 
form a ring network in the framework. They share two generators, G and 
F, each with discriminators DY and DX. Each one-way GAN has two 
generators and one discriminator, as shown in Fig. 3. This structure 
makes its training independent of the paired images (Isola et al., 2017) 
and allows for better adaptive capabilities. 

Here, G and F are generators that convert X real samples into Y 
samples and Y real samples into X samples, respectively. After the fake 
samples are generated, they are input into DY and DX for identification, 
together with the real samples. This process corresponds to the adver-
sarial loss functions (3) and (4), as inferred from Section 2.3.1: 

LGAN(G,DY) = Ey∼Pdata(y)[log DY(y)] + Ex∼Pdata(x)[log(1 − DY(G(x)))] (3)  

LGAN(F,DX) = Ex∼Pdata(x)[log DX(x)] + Ey∼Pdata(y)[log(1 − DX(G(y)))] (4) 

To make the generated image more similar to the expected image, 
the Cycle GAN introduces a cycle consistency loss function (5) (Zhu 
et al., 2017): 

Lcyc(G,F) = Ex∼Pdata(x)
[
‖F(G(x)) − x‖1

]
+ Ey∼Pdata(y)

[
‖G(F(y)) − y‖1

]
(5) 

Therefore, the loss function (6) includes two parts, as shown below: 

L(G,F,DX ,DY) = LGAN(G,DY) + LGAN(F,DX) + λLcyc(G,F) (6)  

where λ is used to control the relative importance of the two parts of the 
loss. 

The target function of the Cycle GAN network model is defined as 
(Zhu et al., 2017): 

G∗,F∗ = argmin
G,F

max
DX ,DY

L(G,F,DX ,DY) (7)  

With continuous improvement in the alternate training performance, 
the two generators can finally realize the mutual generation of X and Y 
style images. The unsupervised and adaptive approach of Cycle GAN for 
style transfer between two images provides a powerful reference for its 
application in food engineering. For instance, GANana achieved two-to- 
three-dimensional image reconstruction of isolated banana (Hartley 
et al., 2021). Fruit occlusion is the main factor affecting fruit size 
measurement. Based on the idea of Cycle GAN style transfer, occluded 
and un-occluded images of fruit were input as two different style images 
into the Cycle GAN model for training. The occluded style could be used 
to generate an un-occluded style image to achieve fruit occlusion re-
covery. Compared with existing occlusion processing methods, this 
method is not limited by the fruit contour and is not easily disturbed by 
environmental factors. 

2.4. Dataset acquisition 

2.4.1. YOLOv5 training dataset 
To obtain highly accurate object detection, a significant number of 

effective images are often required for training. The acquisition of a 
dataset can be established by oneself or from a public dataset. Self-built 
datasets contain specific applicable objects that are typically collected 
from the field and labeled manually. As shown in Fig. 4a, fruit images of 
two categories, citrus and strawberry, were collected in natural envi-
ronments. Citrus images were primarily captured in citrus orchard, and 
strawberry images were obtained from greenhouse. The self-built 

Fig. 3. The overall framework of the Cycle GAN, including two adversarial loss, forward cycle-consistency loss and backward cycle-consistency loss.  
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dataset includes images of un-occluded fruits, fruits occluded by leaves, 
branches, overlapping fruits, and fruits affected by lighting conditions. A 
camera (Nikon) was used as the capturing tool, and the image size was 
set at 1920*1080*3, ensuring that the fruits are clearly and completely 
displayed in the images. However, the workload of manual collection is 
impractical and the image richness is usually insufficient; therefore, 
public datasets need to be used to supplement private datasets. 

Public image datasets have been increasingly used in agriculture in 
recent years, including datasets specifically for fruits, such as date fruit 
(Altaheri et al., 2019), deep fruit (Sa et al., 2016), Open Images (Kuz-
netsova et al., 2020) and COCO(Lin et al., 2014). The chosen image 
dataset for the training and validation was from the Open Images dataset 
(Kuznetsova et al., 2020), which contains nine million images and label 
data files corresponding to some of the images. More than 600 object 
classes of tags can be directly used for supervised learning, which greatly 
reduces the workload of image annotation in dataset preparation. The 
available detection categories for agricultural application scenarios 
include fruits (apples, oranges, strawberries, tomatoes, cucumbers, etc.), 
flowers, plants, and insects. The detection objects are framed in a box, as 
shown in Fig. 4b. As shown in Table 1, after image collection and 
screening, a total of 1213 citrus images were obtained, including 667 
images from the self-built database and 546 images from the Open Im-
ages dataset. A total of 1387 strawberry images were collected, 
including 714 from the self-built database and 613 from the Open Im-
ages dataset. The dataset contains a total of 1381 self-built images and 
1219 Open Images, with a ratio of approximately 1.13, indicating a 
relatively balanced distribution. Combining two datasets can increase 
the diversity of training samples, which helps to improve the general-
ization ability and robustness of the model. 

2.4.2. Cycle GAN training dataset 
According to the analysis in Section 2.3, the Cycle GAN training 

dataset requires images of a certain class of occluded and un-occluded. 
Few existing public datasets meet these requirements, and for the pur-
pose of this study, a training dataset needed to be built around these 
requirements. Taking citrus as an example, the dataset preparation 
process is shown in Fig. 5.  

(1) Due to the large number of training images required by Cycle 
GAN, a method that decomposes videos into images is considered 
to quickly obtain original images. In order to obtain diverse citrus 
occluded and un-occluded images, citrus videos are collected 
from both manual setting and natural environments. For the 
manual setting, individual citrus fruit was recorded from various 
angles and positions, with occlusions including leaves and 
branches at different angles and proportions, under a single 
background condition. In the natural environment, citrus videos 
are captured from different angles and positions, presenting more 
complex challenges such as occlusions caused by leaves and 
branches, fruit-to-fruit occlusions, and lighting variations. By 
combining data from these two distinct environments, the rich-
ness of the training dataset can be significantly enhanced, 
contributing to the development of more robust models. The 
capturing tool used here is a Nikon digital camera, and the 
extracted image size is 1920*1080*3. The video frame rate is set 
at 30 frames per second, with 5 images extracted per second.  

(2) Citrus images undergo operations such as grayscale conversion 
and binarization, enabling the extraction of citrus contour region 
based on contour size and shape feature. 

Fig. 4. (a) Self-built datasets of citrus and strawberry; (b) Some fruit, flower, plant and insect images obtained from Open Images website Open Images V4 (storage. 
googleapis.com). 

Table 1 
The number of YOLOv5 training dataset.  

Class Self-built dataset Open Images Self-built: Open Images 

Citrus 667 546 1.22 
Strawberry 714 673 1.06  

Table 2 
The number of Cycle GAN training dataset.  

Class Fruit occluded Fruit un-occluded 

Manual Natural Manual Natural 

Citrus 4075 7188 3927 3987 
Strawberry 3947 4515 1288 4923  
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(3) After the edge coordinates of the fruit contour are detected, an 
image with only the part of the fruit and branches and leaves is 
obtained through a cropping operation. The cropped image is 
normalized in size and converted into a size of 256*256*3. As 
shown in Table 2, a total of 11,263 occluded citrus images and 
7914 un-occluded citrus images were obtained, along with 8462 
occluded strawberry images and 6211 un-occluded strawberry 
images. Among them, 13237 images were acquired in manual 
setting environments, while 20613 images were captured in 
natural environments. This dataset contains as much as possible 
various occluded and un-occluded situations that may be 
encountered in practical applications. 

2.5. Image processing 

After the object detection model is processed, a single-fruit image is 
cropped. An image processing flowchart is shown in Fig. 6a. For the fruit 
size information, it can be obtained by combining the distance values. 
The image processing programs used in this study were developed using 
Python OpenCV.  

(1) The RGB image of the fruit is read and input to the trained Cycle 
GAN network for occlusion recovery.  

(2) To more accurately extract the contour of fruits from recovered 
image, conversion from RGB to HSV and YCrCb color spaces was 
performed and split into single-channel images. As shown in 

Fig. 7, the B, S, and Cr channels are selected as they exhibited 
more distinct fruit contour, where S and Cr respectively describe 
saturation and chrominance.  

(3) The B, S, Cr variation range of a specific color is then used to 
extract the fruit image mask: 

mask =

{ 255, (B, S,Cr)(i,j) ∈
[
(B, S,Cr)colorlow , (B, S,Cr)colorhigh

]

0, (B, S,Cr)(i,j) ∕∈
[
(B, S,Cr)colorlow , (B, S,Cr)colorhigh

]

(8)   

In the equation above, (B, S,Cr)(i,j) represents the B,S,Cr pixel value 
corresponding to the position (i, j). (B, S,Cr)color low and (B, S,Cr)color high 

represent the lower and upper limits, respectively, where the B, S, Cr 
pixel value within this range corresponding to a specific color.  

(4) The median filtering operation filters the isolated noise points, 
extracts the contour of the fruit, and covers the original image. As 
shown in Fig. 6b, the pixel size, including the length, width, and 
area, can be calculated from the contour.  

(5) The ratio coefficient k between the actual size and the pixel size is 
obtained by combining the distance d. After conducting multiple 
tests within the range of 10–50 cm between the camera and the 

Fig. 5. The overall flow-chart of Cycle GAN dataset preparation.  

Fig. 6. Image processing for size measurement. (a)The overall flow of image processing; (b)The size measurement of fruit occluded and un-occluded; (c)The linear 
regression result of Distance to k. 
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plant, the relationship diagram is obtained by linear regression, 
as shown in Fig. 6c. 

k = 0.00683 ∗ d + 0.0438 R2 = 0.95 (9)    

(6) The pixel size obtained in (4) is multiplied by the ratio k of (5) to 
obtain the actual size. 

The actual area is measured using Equation (10): 

area(actualsize) =
areacontour
areabox

∗ Length ∗Width(actualsize) (10)  

where areacontour and areabox represents the fruit contour pixel area and 
the detected rectangular box pixel area, respectively, and Length and 
Width are the actual sizes. 

2.6. Performance metrics 

In order to assess the algorithm performance in this study, a series of 
metrics have been defined for the stage of object detection, occlusion 
recovery, and size measurement. The following is an introduction to the 
evaluation metrics used for each stage. 

2.6.1. Object detection 
Precision, Recall, mAP50, mAP50:90 and model size are the five 

metrics used to evaluate the performance of the object detection model. 

Precision =
TP

TP+ FP
(11)  

Recall =
TP

TP+ FN
(12) 

Precision measures the proportion of correctly predicted positive 
instances out of all positive predictions, while Recall measures the 
proportion of correctly predicted positive instances out of all actual 
positive instances. TP represents true positives, which are the correctly 
predicted positive instances. FP represents false positives, which are the 
incorrectly predicted positive instances. FN represents false negatives. 
mAP50 refers to the mean Average Precision when the intersection over 
union (IOU) is 0.5, while mAP50:90 computes the mean average precision 
across a range of IOU thresholds from 0.5 to 0.95 at intervals of 0.05. 
mAP50 and mAP50:90 are an important evaluation metric that provides 
an overall performance measure for object detection models. The closer 
Precision, Recall, mAP50 and mAP50:90 are to 1, the better the perfor-
mance of the object detection model. Model size is often considered as a 
reference for evaluating the running speed and lightweight character-
istics of a model. 

2.6.2. Occlusion recovery 
In order to evaluate the performance of occlusion recovery, evalua-

tion metrics such as relative error of contour pixel area, intersection over 
union of contour (IOUcontour), under-segmentation rate (UR) and over- 
segmentation rate(OR) were employed. 

Relative error =
|Rs − Ts|

Rs
× 100% (13)  

IOUcontour =
Rs ∩ Ts

Rs ∪ Ts
× 100% =

Is
Rs + Os

× 100% (14)  

UR =
Us

Rs + Os
× 100% (15)  

OR =
Os

Rs + Os
× 100% (16) 

As shown in Fig. 8, Rs represents the contour of the un-occluded fruit, 
which serves as the reference result. Ts represents the fruit contour 
restored by Cycle GAN after being occluded, which is the occlusion re-
covery result. The relative error between Rs and Ts is used to evaluate 
the numerical deviation. IOUcontour represents the proportion of 
correctly recovered occlusions Is to the union of Rs and Ts. Us represents 
the area that appears in the reference result but not in the occlusion 
recovery result, while Os represents the area that appears in the occlu-
sion recovery result but not in the reference result. IOUcontour, UR, and 
OR are calculated at the pixel level to assess the overlap between the 
occlusion recovery result and the reference result. 

2.6.3. Size measurement 
The evaluation metrics for size measurement include the mean ab-

solute percentage error (MAPE), root mean square error (RMSE), and 
mean absolute error (MAE) between the measured results and the actual 
results. The size parameters involved in the evaluation are distance, 

Fig. 7. The original color fruit recovered images and corresponding B, S, Cr single-channel images.  

Fig. 8. Schematic diagram of occlusion recovery evaluation metrics definition.  
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length, width, and area. 

MAPE =
1
n

∑n

i=1

|ŷi − yi|
yi

× 100% (17)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)2

√

(18)  

MAE =
1
n
∑n

i=1
|ŷi − yi| (19)  

3. Results and discussion 

In order to systematically evaluate the algorithm performance of this 
study, the test data involves two datasets. The validation results for 
object detection performance in Section 3.1 are based on the object 
detection training dataset. Other results, including the object detection 
accuracy comparison in Section 3.1, as well as all the test results in 
Sections 3.2, 3.3, and 3.4, are based on the same field fruit images 
collected using the robotic platform. The image size is 1024*768*3. 
These field fruit images comprise 99 citrus images and 57 strawberry 
images from the natural environment, with a total of 161 oranges and 66 
strawberries. Among them, there are 48 pairs of citrus and 28 pairs of 
strawberries that were captured under both occluded and un-occluded 
conditions, specifically intended for evaluating occlusion recovery 
performance. 

3.1. The performance on fruit detection 

The 1213 citrus images and 1387 strawberry images from the 
training dataset were divided into a training set and a validation set 
according to the ratio of 8:2, respectively. To compare the object 
detection performance of YOLOv5, Faster RCNN and SSD were selected 
for comparative experiments using the same training set and validation 
set. The stable model obtained after 300 epochs were chosen as the final 
model. The performance comparison of the three object detection 
models is shown in Table 3. YOLOv5 achieved the best results for the 
same fruit in terms of various accuracy metrics. The average values of 
Precision, Recall and mAP50 were all above 0.8. Faster RCNN performed 
slightly lower than YOLOv5, with mAP50 reaching a similar level to 
YOLOv5. SSD showed relatively general performance. Additionally, 
YOLOv5s had the smallest model size (14M) compared to the Faster 
RCNN(51M) and SSD(22M), which benefits both running speed and 
model lightweight. 

To further evaluate the generalization ability and robustness of the 
models, fruit images collected from the robotic platform were used as 
the test set to observe the detection accuracy of the three object detec-
tion models on a new dataset. As shown in Table 4, Faster R–CNN 
achieved a 96.04% accuracy with its two-stage object detector pro-
cessing method. YOLOv5s, on the other hand, achieved a 95.60% high- 
precision detection. Lastly, SSD achieved an accuracy rate of 75.33%. In 
terms of time consumption, the average processing time of YOLOv5s per 
image was only 0.05 s. This is significantly lower than those of Faster 
RCNN and SSD, whose average processing time are 2.7 s and 1.4 s 
respectively. This can be attributed to the fact that YOLOv5s has the 
smallest model size. YOLOv5s achieves object detection accuracy 

comparable to Faster RCNN in a shorter period of time, making it the 
best choice in terms of overall performance. 

3.2. The performance on occlusion recovery 

A total of 11263 occluded citrus images and 7914 un-occluded citrus 
images, as well as 8462 occluded strawberry images and 6211 un- 
occluded strawberry images, were used as the Cycle GAN training 
dataset. After 8 h of training, the total loss value stabilized and was used 
as the final model. To calculate the occlusion recovery performance 
metrics of Cycle GAN, 48 pairs of oranges and 28 pairs of strawberries 
were tested using fruit images collected by the robotic platform. The test 
results for citrus and strawberries are shown in Fig. 9 and Fig. 10, 
respectively. Figs. 9a and 10a show the fruit occlusion recovery images, 
where.  

(1) the un-occluded fruit image;  
(2) the same fruit as in (1) under natural occlusion;  
(3) the contour of fruit (1), which serves as the reference result Rs;  
(4) the contour of the fruit (2) after occlusion recovery using Cycle 

GAN, which serves as the occlusion recovery result Ts;  
(5) the occlusion recovery contour obtained using the traditional 

Hough circle detection algorithm for citrus fruits. 

To ensure a uniform evaluation, the IOUcontour is calculated using the 
value 100 - IOUcontour. The closer the relative error, 100- IOUcontour, UR, 
and OR are to 0, the better the occlusion recovery performance. As 
shown in Fig. 9b, for citrus fruits, Cycle GAN exhibits a smaller range of 
variations in all four metrics compared to the Hough circle detection 
algorithm, indicating stable performance. The specific data distributions 
for each metric are shown in Fig. 9c-f. The evaluation metric values for 
Cycle GAN remain below 20%, while some of the data points for Hough 
reach above 80%. For strawberry, the conventional circle-like fitting 
method cannot be applied for occlusion recovery due to the irregular 
shape. As shown in Fig. 10b-f, the occlusion recovery evaluation metrics 
of Cycle GAN also exhibit a relatively stable distribution within 20%. 
The mean values of each occlusion recovery evaluation metrics are 
shown in Table 5. The mean values of Cycle GAN evaluation metrics 
relative error, 100- IOUcontour, UR, and OR are approximately 5.48%, 
11.19%, 6.68%, and 5.01%, which are much lower than those of the 
Hough method. Cycle GAN achieves high accuracy in all evaluation 
metrics, effectively fulfilling occlusion recovery under natural 
conditions. 

In addition, Table 6 presents the comparison results between Cycle 
GAN and other fruit occlusion recovery algorithms(Ge et al., 2019; Gong 
et al., 2022; Kim et al., 2023; Magistri et al., 2022). It can be observed 
that Cycle GAN achieved good recovery performance. (Gong et al., 
2022) achieved low recovery error due to the use of high-precision 
RGB-D cameras. The effective recovery of occluded areas can be ach-
ieved by combining multi-modal information such as fruit images and 
corresponding depth maps, however this also results in increased costs. 

3.3. The performance on size measurement 

After obtaining the fruit contours and distance information, the fruit 

Table 3 
The performance comparison of the three object detection models.  

Model Class Precision Recall mAP50 mAP50:95 Model size/M 

Faster RCNN Citrus 0.72 0.67 0.84 0.62 51 
Strawberry 0.57 0.54 0.77 0.49 51 

SSD Citrus 0.31 0.30 0.38 0.25 22 
Strawberry 0.19 0.23 0.26 0.16 22 

YOLOv5s (this work) Citrus 0.88 0.83 0.88 0.72 14 
Strawberry 0.79 0.74 0.82 0.57 14  
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size was measured according to the process shown in Fig. 6a. To test the 
accuracy of the size measurements, size measurement evaluation met-
rics were computed for 155 citrus fruits and 62 strawberries in terms of 
the comparison between their actual sizes and the measured sizes based 
on the same field fruit images collected using the robotic platform. The 

actual size was measured as shown in Fig. 11. The length and width were 
measured with Vernier calipers while the distance was determined using 
a ruler. The fruit area was calculated from areacontour and areabox, which 
represents the fruit contour pixel area and the rectangular box pixel 
area, respectively. 

Fig. 12 presents the box plots of the actual and measured values for 
distance, length, width, and area of citrus and strawberry. It is evident 
that the measured values closely align with the actual values in terms of 
their numerical distribution. To further analyze the errors in each size, 
corresponding MAPE, RMSE, and MAE were calculated as shown in 
Table 7. The distance measurement MAPE can be better maintained at 
10%, which provides a strong guarantee of the subsequent size mea-
surement accuracy. For the length and width measurements, the MAPE, 
RMSE, and MAE are approximately 9.18%, 5.38 mm and 4.24 mm. A fast 

Table 4 
The comparison of object detection accuracy on fruit images collected from the robotic platform.  

Model Class number Correctly detected Falsely detected Accuracy/% Time consumption/s 

Faster RCNN Citrus 161 157 4 96.04 2.72 
Strawberry 66 61 5 

SSD Citrus 161 114 42 75.33 1.4 
Strawberry 66 57 9 

YOLOv5s (this work) Citrus 161 155 6 95.60 0.05 
Strawberry 66 62 4  

Fig. 9. Occlusion recovery using Cycle GAN. (a) Comparison of occlusion recovery of citrus; (b) Box plot of the relative error, 100- IOUcontour, UR, and OR of the 
Cycle GAN and Hough; The (c) relative error, (d)100- IOUcontour, (e)UR, and (f)OR occlusion recovery of 48 pairs of citrus. 

Fig. 10. Occlusion recovery using Cycle GAN. (a) Comparison of occlusion recovery of strawberry; (b) Box plot of the relative error, 100- IOUcontour, UR, and OR of 
the Cycle GAN; The (c) relative error, (d)100- IOUcontour, (e)UR, and (f)OR occlusion recovery of 28 pairs of strawberry. 

Table 5 
The mean values of occlusion recovery evaluation metrics.  

Method Class Relative 
error/% 

100- 
IOUcontour/% 

UR/ 
% 

OR/ 
% 

Cycle GAN 
(this work) 

Citrus 4.83 10.07 5.28 4.78 
Strawberry 6.12 12.31 8.08 5.23 

Hough Citrus 18.76 23.53 15.33 8.21  
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and low-cost measurement is achieved using a noncontact measurement 
of the basic size in the complex natural environment. For the area, the 
MAPE, RMSE, and MAE of the measurement was 14.23%, 353.98 mm2 

and 277.45 mm2, which is lower to the relative error levels of area 

measurement in existing reports (22%, 20%) (Golbach et al., 2016; 
Masuda, 2021). However, the methods employed in these reports utilize 
multi-camera, multi-angle imaging to reconstruct plants in non-natural 
environment, which is applicable only in fixed scenarios and involves 
high costs. 

3.4. Field test performance and discussion 

Illumination and occlusion under natural conditions pose challenges 
to noncontact fruit size measurements. Hence, this study proposes a size 
measurement method based on YOLOv5 and Cycle GAN. However, in 
practical applications, issues such as time, cost, and environmental 
adaptability must be considered. Therefore, field tests were conducted 
to test the practicality. Following the procedure shown in Fig. 1, fruit 
images and distance values were collected in a natural environment and 
wirelessly transmitted to a computer. A total of 99 citrus images (161 
citrus) and 57 strawberry images (66 strawberries) were collected, and 
the real situations including the occlusion caused by leaves, branches, 
and fruits, as well as lighting problem. The object detection, occlusion 
recovery, and size measurement test results based on these fruits image 
have been shown in section3.1, 3.2 and 3.3. The final field test results 
are presented in Figs. 13 and 14, after rapid processing of the collected 
images, the information such as the class, length, width and area of the 
fruit is clearly visualized in the original image. The corresponding re-
sults are stored in the computer in the form of images and data, which is 
convenient for subsequent analysis and management. These results 
indicate the proposed method can effectively adapt to the size mea-
surement in the natural environment under different occlusion and 
illumination conditions. However, this method is not applicable when 
the fruit is completely obscured. Other natural conditions, such as 
blurring and overexposure, require further testing. 

For the overall test results, the average measurement time was 0.2 s 
while the detection accuracy was 95.6%. The average relative error of 

Table 6 
Comparison of with other algorithms for fruit occlusion recovery.  

Algorithm Class Recovery 
accuracy/% 

Recovery 
error/% 

Deep 
learning 

YOLOv5s + Cycle 
GAN (this work) 

Citrus/ 
Strawberry 

– 5.48 yes 

YOLOv5s + Hough 
circle 

Citrus – 18.76 no 

DCNN + WHR (Ge 
et al., 2019) 

Strawberry 87.00 – yes 

Mask RCNN + SPR 
(Gong et al., 
2022) 

Tomato – 2.15 yes 

U-net (Kim et al., 
2023) 

Cucumber 82.43 – yes 

FCN + encoder ( 
Magistri et al., 
2022) 

Strawberry 87.97 – yes  

Fig. 11. The measurement operations of width, length distance and actual area.  

Fig. 12. The citrus actual and measurement result of (a) distance, (b) length, (c) width, and (d) area. The strawberry actual and measurement result of (a) distance, 
(b) length, (c) width, and (d) area. 

Table 7 
The MAPE, RMSE, and MAE for size measurement.  

Class Distance Length Width Area 

MAPE RMSE MAE MAPE RMSE MAE MRPE RMSE MAE MRPE RMSE MAE 

Citrus 6.76 2.83 2.23 6.56 6.21 4.58 8.20 6.31 4.91 12.24 547.64 414.32 
Strawberry 9.05 2.34 1.82 10.91 4.53 3.70 11.03 4.46 3.75 16.22 160.33 140.59 
Average 7.90 2.58 2.03 8.73 5.37 4.14 9.62 5.39 4.33 14.23 353.98 277.45 
unit % cm cm % mm mm % mm mm % mm2 mm2  
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the occlusion recovery was 5.48%. It is worth noting that the average 
relative error in the measurement of individual fruit sizes is 8.43% for 
individual fruits and the 10.12% overall error under the complex natural 
environment. However, in the case of multiple fruits, the measurement 
errors are larger due to issues such as the presence of branches and 
leaves, mutual occlusion between fruits, and varying distances. In 
comparison to existing solutions that utilize depth cameras to achieve 
high-precision measurements of individual fruits, obtaining field test 
results using our method in complex natural environments with low-cost 
ranging devices is deemed acceptable. In terms of speed and accuracy, 
the proposed method achieved a good usage effect. 

Although the proposed method realizes satisfactory fruit size mea-
surement results in natural environments, there are still some limita-
tions. On one hand, the image and distance data require collecting from 
a fixed distance and angle as much as possible. In this study, a data 
collection box is used to assist in positioning, and other appropriate 
method can be selected according to the requirements in future. On the 
other hand, it should be noted that the input images of Cycle GAN should 
ensure that the citrus is located in the central area. 

4. Conclusion 

To achieve a noncontact measurement of fruit size in the natural 
growth state, this study proposed a systematic fruit size measurement 
method based on YOLOv5 and Cycle GAN. Additionally, it built a robot 
platform that automatically collects fruit images and distance informa-
tion at close range and transmits it to a computer for real-time object 
detection, occlusion recovery, and size measurement. The object 
detection algorithm based on YOLOv5 showed better generalization 
ability than other comparable methods and achieved recognition accu-
racy of 95.6% in field tests. Occlusion recovery based on Cycle GAN 
adaptively eliminated the problem of being occluded by branches, 
leaves and fruits in the fruit image and was not limited by the shape of 
the fruit. In addition, the average relative error was 5.48%, which sat-
isfies the actual measurement requirements. Through low-cost distance 
measurement, a proportional relationship between the actual size and 
pixel size can be easily obtained. Additionally, noncontact fruit size 
measurement can be achieved with an average relative error of 
approximately 8.43% for individual fruits and the 10.12% overall error 
under the complex natural environment and a single image processing 
time of only 0.2 s. In practice, the entire system ran in real time with 
multiple threads, which meets the requirements for rapid detection in 

Fig. 13. Field test results of citrus. Occlusion caused by (1) leaves, (2) leaves and branches, (3) fruits, (4) leaves and fruits, and (5) lighting problem.  

Fig. 14. Field test results of strawberry. Occlusion caused by (1) leaves, (2) branches, (3) fruit, (4) leaves and branches, and (5) lighting problem.  
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large batches. 
The scheme proposed in this study can be improved in practical 

operations. Primarily, the measurement component can migrate from 
the computer terminal to the embedded device; therefore, it is necessary 
to explore auxiliary measurement and positioning solutions. 
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