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Abstract
Discharging images contain useful information regarding the operation mode of surface
microdischarge (SMD). To solve the shortcomings of low efficiency, high cost, and long
operation time of existing SMD operation-mode recognition methods, a convolutional neural
network (CNN) based on deep learning is introduced herein. The visible image library of SMD
at different applied voltages, dielectric sheets with different dielectric constants, and dielectric
sheets with different thicknesses and exposure times are constructed using a digital camera. The
typical structure of a CNN is discussed, and the hyperparameters, including the number of
network layers, convolution kernel size, number of neurons in the fully connected layer, and
activation function type that affect the recognition accuracy of the CNN are investigated. The
optimal structure of the CNN for the SMD operation-mode recognition is obtained via training.
The recognition accuracy of the CNN is compared with those of three traditional machine
learning methods: support vector machine (SVM), decision tree (DT), and random forest (RF).
Test results show that the recognition accuracy based on the CNN is 99.745%, which is better
than those of the SVM, DT, and RF. Finally, an SMD operation-mode online recognition
method based on the CNN is proposed.

Keywords: surface microdischarge, plasma diagnostic, convolutional neural network,
visible image, operation-mode recognition

(Some figures may appear in colour only in the online journal)

1. Introduction

Surface microdischarge (SMD) has received significant atten-
tion because of its broad application prospects in food preser-
vation [1, 2], agriculture [3, 4], material processing [5, 6], and
biomedicine [7, 8]. SMD is a simple process that allows dir-
ect discharge in air without the use of a specific background
gas; furthermore, it offers the advantages of low cost, high
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flexibility, and abundant chemical reactions [9–11]. Based on
the dominant gas-phase products, the operationmodes of SMD
can be categorized into ozone, transition, and NOx modes
[12–16]. When O3 is the main gas-phase production, SMD
occurs in the ozone mode; when O3 and NOx are simultan-
eously detected in themain gas-phase production, SMDoccurs
in the transition mode; when NOx is the main gas-phase pro-
duction, SMD occurs in the NOx mode.

Realizing fast, low-cost, reliable, and online operation-
mode recognition is key in the practical application of
SMD. The existing operation-mode recognition methods are
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primarily completed using equipment such as a spectrometer,
ozone detectors, and nitrogen oxide detectors. These methods
involve offline detection as well as a specific detection envir-
onment or design relevant to detection devices; moreover, they
are associated with disadvantages of long detection time, high
detection cost, and complicated operation. For example, using
Fourier transform infrared (FTIR) spectroscopy is a common
way to detect operation modes of SMD in laboratory, the
instrument is expensive and the measurement system usually
requires additional absorption cell with IR windows. As for an
O3 or NOx detector, it also needs to be connected to the whole
system, and usually takes seconds or tens of seconds to obtain
one stable result, the responding time and accuracy of which
depends on the device cost. As the discharge, diagnostics, and
application of SMD cannot be realized simultaneously using
these methods, their industrial promotion and application
are limited.

Various signals are generated by non-equilibrium plas-
mas (NEPs) during discharges, including electrical, acous-
tic, thermal, and optical signals [17–19]. Among them, dia-
gnostic technology based on optical signals is important for
analyzing the characteristics of NEPs [20, 21]. The optical sig-
nals released by NEPs includes ultraviolet, visible, and near-
infrared signals [22]. Owing to the continuous development of
digital image processing technology, studies regarding the vis-
ible image of NEPs has increased, and the scope of its applic-
ation has become increasingly extensive [23, 24]. It has been
reported that the visible image of NEPs can be used to cat-
egorize the discharge stage, classify the discharge mode, pre-
dict the discharge power, and quantify the discharge product
[25–28]. The visible image of NEPs contains abundant dis-
charge information, which can effectively reflect the discharge
evolution. Furthermore, the diagnostic technology based on
the visible image is a non-invasive diagnostic method and
offers the advantages of low cost, simple operation, and high
detection speed.

In recent years, owing to the rapid increase of artificial intel-
ligence (AI), AI algorithms have been applied increasingly to
the field of NEPs [29, 30]. Krüger et al applied the energy
distribution of impinging projectile particles as the input of a
multilayer perceptron network to accurately predict the energy
and angular distributions of reflected and sputtered particles
during thin-film deposition [31]. The effects of hyperparamet-
ers such as the number of hidden layers, number of neurons,
and activation function type on the prediction accuracy were
investigated. Ye et al used a digital camera to obtain visible
images of corona discharge at different states and then extrac-
ted the color, brightness, and shape information of the dischar-
ging images to be used as the input of four different machine-
learning algorithms, i.e. the support vector machine (SVM)
[32], K-nearest neighbor [33], single layer perceptron [34],
and decision tree (DT) [35], to predict the discharge voltage of
corona discharge corresponding to different states [36]. Wit-
man et al performed deep reinforcement learning to achieve
real-time temperature control of atmospheric pressure plasma
jets (APPJs) under different reaction conditions to solve the
complex control problems of APPJs in practical applications
[37]. AI exhibits the characteristics of simplicity, reliability,

fast operation, and good application effects; hence, it has
been successfully applied in the modeling, diagnostics, and
control of NEPs.

To address the disadvantages of the existing operation-
mode recognition method of SMD, an AI algorithm is intro-
duced herein. FTIR was used to identify the gas-phase
products of SMD under different discharge conditions and
hence the corresponding operation mode. A digital camera
was used to capture the visible image of the SMD in the cor-
responding operation mode. An SMD operation-mode online
recognition method based on a convolutional neural network
(CNN) is proposed herein. The number of network layers, con-
volution kernel size, number of neurons in the fully connected
layer, and activation function type were investigated to obtain
the optimal structure of the CNN for the operation-mode
recognition of SMD. The recognition accuracy of the optim-
ized CNN was discovered to be the highest compared with
those of the other three traditional machine-learning methods.

2. Experimental setup and measurements

2.1. Experimental setup

Figure 1(a) shows the structure of the SMD device used in
this study. A typical SMD device with a sandwich structure
was placed on top of a cylindrical acrylic chamber with a dia-
meter of 38 mm and a height of 45 mm. Two ZnSe windows
were mounted on the wall of the chamber to transmit an IR
beam to analyze the composition of the gas-phase products.
A high-voltage and high-frequency AC power supply (Corona
Lab, CTP-2000K) was used as the power source. More details
regarding the experimental setup are available in the literature
[38]. The flowchart of the method proposed in this study is
shown in figure 1(b). Firstly, an image library was construc-
ted, 70% of the images were used for training and 30% of the
images were used for testing. Then, the construction of the
CNN was established, and the hyperparameters of the CNN
model were optimized, including the number of network lay-
ers, convolution kernel size, activation function type, and num-
ber of neurons in the fully connected layer. Finally, the per-
formance of the CNN model was evaluated.

To construct a discharge image library of SMD, two types
of dielectric sheets with three different thicknesses were used
in this study, as shown in table 1.

2.2. Measurements and methods

For all experiments, the frequency of the AC power supply
(CTP-2000K, Corona Lab) was fixed at 8 kHz. A voltage
probe (Tektronix P6015A) and an oscilloscope (Tektronix
MDO3034) were used to monitor the applied AC voltage amp-
litude. A current probe (Pearson 6585)was used tomeasure the
circuit current. To determine the power consumed by the SMD
device, using the Lissajous method, a 10 nf capacitor was con-
nected in series between the mesh and ground, and the voltage
across the capacitor was measured using a differential probe
(Tektronix P5200A).
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Figure 1. (a) Illustration of SMD device and experiment setup. (b) The flowchart of the method proposed in this study.

Table 1. Two types of dielectric sheets used in this study.

Dielectric sheet Dielectric constant Thickness (mm)

Al2O3 9.3 0.5, 1, 2
ZrO2 12.5 0.5, 1, 2

The chemical composition of the gas produced by the SMD
device was determined in situ realized using FTIR (Bruker,
VERTEX 70). The wavenumber resolution of the FTIR meas-
urements was set to 4 cm−1, and 16 scans were averaged to
create each spectrum. The time resolution of each spectrum
was 15 s. The primary gas-phase products generated by the
SMD device included N2O, NO, NO2, HONO, and O3.

As shown in figure 1, a digital camera (NIKON D750) was
used to obtain discharge images of the SMD under different
discharging conditions against a dark background. The main
camera parameters were set as follows: aperture f = 5.6 and
ISO = 2000. Meanwhile, default values were assigned to the
remaining parameters. For the same discharging condition, the
discharging images of SMD under different exposure times

were recorded, including 30, 25, 20, 15, 10, 8, 6, 4, 2, 1, 1/2,
1/4, 1/6, 1/8, 1/10, 1/15, and 1/20 s.

2.3. CNN

In recent years, the rapid development of computer technology
has increased the application of deep learning in many fields
[39, 40]. As a form of deep learning, CNNs have been widely
used in natural language processing [41], speech recognition
[42], face recognition [43], object detection [44], and medical
diagnosis [45]. The CNN is based on the basic principles of a
biological visual neural network [46]. A CNN is a feedfor-
ward neural network that involves few network parameters,
low computational complexity, and high generalization ability.

A typical CNN is primarily composed of an input layer, a
convolutional layer, a pooling layer, a fully connected layer,
and an output layer [47], as shown in figure 2. The input layer
is used to input the original data into the network. The con-
volutional layer, which affords local connections and weight
sharing, is used to extract the feature map from the input data.
The pooling layer uses the output of the convolutional layer as
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Figure 2. Typical structure of CNN.

input. It down samples the feature map extracted by the convo-
lutional layer to reduce the dimension of the featuremap, avoid
the occurrence of overfitting, and obtain the main features of
the input data. The pooling layer is primarily implemented
via max pooling. The convolutional and pooling layers are
alternately connected to realize automatic feature extraction
and input data compression, while reducing the training time
of the network. The fully connected layer is located behind the
convolutional and pooling layers. It is similar to the traditional
neural network structure and is used to integrate the features
extracted by the convolutional and pooling layers. The output
layer is the final result of the network output.

The recognition performance of a CNN is associated with
its hyperparameters, including the number of network layers,
convolution kernel size, number of neurons in the fully con-
nected layer and activation function type. We tested and com-
pared the recognition accuracy for each hyperparameter: (a)
for the number of network layers, the testing variables include
5, 7, 9, 11 and 13 layers; (b) for convolution kernel size, 1× 1,
2 × 2, 3 × 3 and 4 × 4 were tested; (c) for number of neur-
ons in the fully connected layer, the results of 64, 128, 256,
512 and 1028 neurons were compared; (d) for the activation
function type, the sigmoid, hyperbolic tangent function (tanh),
rectified linear unit (ReLU), and self-gated activation function
(swish) were tested. The equations of these four function type
are shown below:

sigmoid(x) =
1

1+ e−x
(1)

tan(x) =
ex− e−x

ex+ e−x
(2)

relu(x) =max(0, x) (3)

swish(x) = x× sigmoid(x) . (4)

More details of how these hyperparameter affect the perform-
ance will be presented and discussed in section 3.4.

2.4. Construction of image library

We acquired visible images of SMD under different
discharging conditions, including dielectric sheets with
different dielectric constants, dielectric sheets with different

thicknesses, applied voltages, and different exposure times.
We obtained 7852 discharge images of SMD under different
conditions to form the image library. Among them, 3926 dis-
charging images corresponded to the ozone and non-ozone
modes. All the discharging images were randomly categor-
ized into training, validation, and test sets. In fact, 70% of the
discharging images was used for training and validating the
CNN, and 30% of the discharging images was used for testing
the trained CNN. We performed five-fold cross-validation,
i.e. 70% of the discharging images was randomly segregated
into five groups, four of which were used as the training set,
and the remaining was used for the validation set. The hyper-
parameters of the CNN were learned and optimized using the
backpropagation algorithm and applying the Adam update
scan during training. The final performance of the CNN was
evaluated using the test set.

To establish and train the CNN, Tensorflow framework
1.12.0 and Keras API 2.2.4 were used. To accelerate the train-
ing process, CUDA 10.2 and two NVIDIA GPUs (GeForce
RTX 2080) were employed. The time required for the training
process of the CNNwas within 1 h, and for the testing process,
the time was about 2 s.

3. Results and discussion

3.1. Typical FTIR spectrum of SMD

Figure 3 shows the typical FTIR spectrum of the SMD device
comprising a 1 mm Al2O3 dielectric sheet. When the applied
voltage Vp-p was 6 kV, the main gas-phase product was
O3 (1055 cm−1); therefore, we defined the SMD device
operating in the ozone mode. When the applied voltage
Vp-p was 12 kV, the main gas-phase products were nitrogen
oxides, including NO (1900 cm−1), NO2 (1630 cm−1), and
HONO (1255 cm−1); therefore, we defined the operation
mode as ‘non-ozone’ in our study.

3.2. Classification of operation modes for SMD based on
FTIR

Figure 4 shows the operation modes for the SMD under dif-
ferent conditions detected via FTIR. When the thicknesses of
the Al2O3 dielectric sheet were 0.5, 1, and 2 mm, the trans-
fer voltages from the ozone mode to the non-ozone mode of
the SMD were 5.5, 7.5, and 11.5 kV, respectively. Meanwhile,
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Figure 3. Typical FTIR spectrum of SMD device comprising 1 mm Al2O3 dielectric sheet under different applied voltages.

Figure 4. Classification of operation modes for SMD via FTIR.

when the thickness of the ZrO2 dielectric sheet was 0.5, 1,
and 2 mm, the transfer voltage from the ozone mode to the
non-ozone mode of the SMD was 3, 3.5, and 5 kV, respect-
ively. For dielectric sheets of the same dielectric constant, the
transfer voltage for different SMD operation modes increased
with the thickness of the dielectric sheet. For dielectric sheets
of the same thickness, the transfer voltage for different SMD
operation modes decreased with the increase in the dielec-
tric constant. Furthermore, it was discovered that the SMD
operation modes could not be distinguished via only the
discharge voltage.

3.3. Typical discharging color images of SMD

Figure 5 shows the discharging color images of the SMD
device corresponding to Al2O3 and ZrO2 dielectric sheets with
thicknesses of 0.5, 1, and 2 mm when the applied voltage
Vp-p was 4.5 kV. Under a constant applied voltage Vp-p, for
dielectric sheets with the same dielectric constant, when the
thickness of the dielectric sheet was smaller, the discharge
power consumption of the SMD device and the discharging
area of the discharging images were greater; additionally, the
discharge intensity and discharge brightness of the discharging
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Figure 5. Discharging images of SMD device corresponding to Al2O3 and ZrO2 dielectric sheets with thicknesses of 0.5, 1, and 2 mm.
Applied voltage Vp-p was 4.5 kV; exposure time of the camera was 1 s.

images were higher. For dielectric sheets of the same thick-
ness, when the dielectric constant of the dielectric sheet was
smaller, the discharge power consumption of the SMD device
and the discharging area of the discharging images were smal-
ler, additionally, the discharge intensity and discharge bright-
ness of the discharging images were lower.

3.4. Analysis of hyperparameters

3.4.1. Selection of the number of epochs for the training of the
model. Figure 6 shows the training and validation loss of
CNN. It can be seen that, the training and validation loss gradu-
ally decreases to be stable and the difference between the two
final loss values is small. The number of epochs selected for
the training of CNN is 100.

3.4.2. Effect of the number of network layers. Feature
extraction and dimensionality reduction of input data are real-
ized through the convolutional and pooling layers of the CNN.
The number of convolutional and pooling layers reflects the
number of network layers. The number of network layers, i.e.
the depth of the network, is associated closely with the per-
formance of the CNN. The greater the number of network lay-
ers, the better is the nonlinear expression ability of the CNN,
and the easier it is to capture the complex transformations
between the input and output. However, as the number of net-
work layers increases, the risk of overfittingmay increase. Fur-
thermore, excessive network layersmay limit the learning abil-
ity of the shallow network in the CNN and reduce the learning
efficiency of the network.

Figure 6. Training and validation loss of CNN.

Figure 7 shows the effect of the number of network layers
of the CNN on the accuracy of the operation-mode recognition
of SMD. The five types of CNNs with different numbers of
network layers contained the same numbers of input and out-
put layers, and the convolution kernel size, number of neurons
in the fully connected layer, and activation function type were
the same: 3 × 3, 512, and tanh, respectively. The first type of
CNN contained one input layer, one convolutional layer, one
pooling layer, one fully connected layer, and one output layer;
therefore, the total number of network layers was five. Mean-
while, the second type of CNN contained one input layer, two
convolutional layers, two pooling layers, one fully connected
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Figure 7. Comparison of recognition accuracy for CNNs with
different numbers of network layers.

layer, and one output layer; therefore, the total number of net-
work layers was seven. The third to fifth types of the CNN
contained one input layer, five convolutional layers, five pool-
ing layers, one fully connected layer, and one output layer;
therefore, the total number of network layers was 13. The res-
ults show that the recognition accuracy of the SMD operation
mode increased with the number of network layers initially,
and that when the number of network layers was 11, the max-
imum training accuracy of 99.672% was achieved. However,
as the number of network layers continued to increase, the
recognition accuracy began to decrease. Therefore, the optimal
number of network layers for the CNN was 11.

3.4.3. Effect of the convolution kernel size. The convolu-
tion kernel is vital to the convolutional layer in a CNN. The
parameters of the convolution kernel are shared during fea-
ture extraction. This parameter-sharing method can effectively
reduce the number of training parameters for a CNN. The
amount of information that the convolutional layer extracts
from the input and the amount of calculation for the network
are associated with the convolution kernel size. The larger the
convolution kernel size, the greater is the amount of inform-
ation that can be extracted by the convolution layer, and the
easier is the extraction of effective features from the input.
Simultaneously, the number of calculations for the network
is increased, resulting in increased network complexity. The
smaller the convolution kernel size, the less is the amount of
information extracted by the convolution layer, which may
cause the loss of important information from the input fea-
tures. However, the training cost of a network can be reduced.

As shown in figure 8, we analyzed the effect of the convo-
lution kernel size of the CNN on the accuracy of the operation-
mode recognition of SMD. The four types of CNN with dif-
ferent convolution kernel sizes contained the same numbers
of input and output layers, and the number of network layers,
number of neurons in the fully connected layer, and activation
function type were the same: 11, 512, and tanh, respectively.

Figure 8. Comparison of recognition accuracy for CNNs with
different convolution kernel sizes.

The results indicate that when the size of the convolution
kernel was 3 × 3, the recognition accuracy was the highest,
i.e. 0.728%, 0.036%, and 0.073% higher than those obtained
by convolution kernel sizes of 1× 1, 2× 2, and 4× 4, respect-
ively. It was discovered that the optimal size of the convolution
kernel for the CNN was 3 × 3.

3.4.4. Effect of the number of neurons in fully connected layer.
The number of neurons in the fully connected layer directly
affects the performance of the CNN. If the number of neur-
ons is extremely small, then the trained network cannot effect-
ively capture the feature space of the input data; this may easily
cause an underfitted network, thereby resulting in subpar net-
work performance. If the number of neurons is extremely high,
network training will be difficult, and the demand for training
data may increase; in other words, more data are required to
train the network, the network may be overfitted. Selecting an
appropriate number of neurons in the fully connected layer is
important when training the CNN.

Figure 9 shows the effect of the number of neurons in
the fully connected layer of the CNN on the accuracy of the
operation-mode recognition of SMD. The five types of CNN
with different numbers of neurons in the fully connected layer
contained the same numbers of input and output layers, and the
number of network layers, convolution kernel size, and activa-
tion function type were the same: 11, 3× 3, and tanh, respect-
ively. The results indicate that when the number of neurons
in the fully connected layer was 512, the recognition accuracy
was the highest, i.e. 0.018%, 0.055%, 0.073%, and 0.036%
higher than those afforded by 64, 128, 256, and 1024 neur-
ons, respectively. The optimal number of neurons in the fully
connected layer was 512.

3.4.5. Effect of the activation function type. The convo-
lutional, pooling, and fully connected layers of the CNN
implement the linear transformation of the input data, and the
activation function is applied to map the linear output of the
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Figure 9. Comparison of recognition accuracy for CNNs with different numbers of neurons in fully connected layer.

Figure 10. Comparison of recognition accuracy for CNNs with
different activation functions.

network to the nonlinear space, thereby increasing the ability
of the network in accomplishing complex tasks.

As shown in figure 10, the accuracies of the operation-mode
recognition of SMD for different activation function types of
the CNN are presented. The four types of CNNs with different
activation functions contained the same number of input layer
and output layer, and the number of network layers, the con-
volution kernel size, and number of neurons in the fully con-
nected layer were the same: 11, 3 × 3, and 512, respectively.
The results show that when the activation function type was
tanh, the recognition accuracy was the highest, i.e. 1.383%,
0.091%, and 0.127% higher than those afforded by the sig-
moid, ReLU, and swish functions, respectively. Therefore, the
optimal activation function was the tanh function.

3.5. Comparison of different recognition methods

Based on the hyperparameters of the CNN, we determined the
optimal structure of the CNN for the operation-mode recog-
nition of SMD. The structure of the final selected CNN was

as follows: the number of network layers was 11; convolution
kernel size, 3 × 3; number of neurons in the fully connected
layer, 512; activation function, tanh. Figure 11 shows the con-
fusion matrix for different recognition methods. The degree of
confusion among the CNN recognition results of ozone mode
and non-ozone mode is: 5 of the 1182 samples of non-ozone
mode are misidentified as ozone mode; 1 of the 1174 samples
of ozone mode are misidentified as non-ozone mode, which is
better than those of the SVM, DT, and random forest (RF).

As shown in figure 12, we used the optimized CNN to
evaluate on the test set. Moreover, we compared the perform-
ance of the CNN with those of the SVM, DT, and RF [48].
The results show that the testing accuracy for the operation-
mode recognition of the SMD based on the proposed CNN
was 99.745%, which was 8.276%, 2.461%, and 0.551% higher
than those of the SVM, DT, and RF, respectively. Table 2
shows the accuracy, precision, recall and F1-score of different
recognition methods. It can be seen that, the accuracy, preci-
sion, recall and F1-score of the CNN are the highest compared
to the other methods.

In conventional machine-learning algorithms such as the
SVM, DT, and RF, data analysis is typically performed on the
samples prior to training. The features input into the model
must be selected manually. It is well known that the recog-
nition accuracy of a model associated significantly with the
selected features. If the training samples are directly input into
the model or the manually selected features are not highly cor-
related model training will be difficult, which will result in a
lower recognition accuracy of the model. However, the ori-
ginal images can be directly used as input to the CNN. Fea-
ture extraction and operation-mode recognition can be auto-
matically completed by the CNN to promptly implement the
mapping relationship between the input and output, as well as
avoid complicated and time-consuming feature engineering.
Compared with conventional machine-learning algorithms,
CNN involves a simpler training process, and its recognition
accuracy is higher. Other deep learning algorithms may also
have similar recognition accuracy up to 99.745% as CNN
with appropriate parameter adjustment, such as long short term
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Figure 11. Confusion matrix for (a) SVM, (b) DT, (c) RF, (d) CNN.

Figure 12. Comparison of recognition accuracy for different SMD operation-mode recognition methods.

Table 2. The accuracy, precision, recall and F1-score of different recognition methods.

Methods Accuracy Precision Recall F1-score

SVM 0.914 69 0.868 28 0.977 00 0.919 44
DT 0.972 84 0.975 99 0.969 34 0.972 65
RF 0.991 94 0.990 65 0.993 19 0.991 92
CNN 0.997 45 0.995 76 0.999 15 0.997 45
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memory [49], ResNet [50], MLeNet [51], faster region-based
CNN [52], and these algorithm constructions and accuracy
comparison will be conducted in our following work.

4. Concluding remarks

In this study, the deep learning methodology was applied
to SMD operation-mode recognition. SMD images contain
abundant information regarding its operation mode, which
is an effective basis for operation-mode recognition. In fact,
SMD images can be directly input into the CNN, thereby
avoiding the complicated process of feature extraction and
selection. The number of network layers, convolution kernel
size, number of neurons in the fully connected layer, and activ-
ation function type affect the recognition accuracy of the CNN.
For SMD operation-mode recognition, the optimal structure
of the CNN was as follows: the number of network layers
was 11; convolution kernel size, 3 × 3; number of neurons in
the fully connected layer, 512; activation function, tanh. Com-
pared with other conventional machine-learning methods, i.e.
the SVM, DT, and RF, the CNN afforded higher recogni-
tion accuracy. Hence, the CNN is envisioned as a prom-
ising method for the online recognition of the SMD operation
mode with low cost, simple operation, high detection speed
and accuracy.
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